11 research outputs found

    DifFace: Blind Face Restoration with Diffused Error Contraction

    Full text link
    While deep learning-based methods for blind face restoration have achieved unprecedented success, they still suffer from two major limitations. First, most of them deteriorate when facing complex degradations out of their training data. Second, these methods require multiple constraints, e.g., fidelity, perceptual, and adversarial losses, which require laborious hyper-parameter tuning to stabilize and balance their influences. In this work, we propose a novel method named DifFace that is capable of coping with unseen and complex degradations more gracefully without complicated loss designs. The key of our method is to establish a posterior distribution from the observed low-quality (LQ) image to its high-quality (HQ) counterpart. In particular, we design a transition distribution from the LQ image to the intermediate state of a pre-trained diffusion model and then gradually transmit from this intermediate state to the HQ target by recursively applying a pre-trained diffusion model. The transition distribution only relies on a restoration backbone that is trained with L2L_2 loss on some synthetic data, which favorably avoids the cumbersome training process in existing methods. Moreover, the transition distribution can contract the error of the restoration backbone and thus makes our method more robust to unknown degradations. Comprehensive experiments show that DifFace is superior to current state-of-the-art methods, especially in cases with severe degradations. Our code and model are available at https://github.com/zsyOAOA/DifFace.Comment: 21 page

    ResShift: Efficient Diffusion Model for Image Super-resolution by Residual Shifting

    Full text link
    Diffusion-based image super-resolution (SR) methods are mainly limited by the low inference speed due to the requirements of hundreds or even thousands of sampling steps. Existing acceleration sampling techniques inevitably sacrifice performance to some extent, leading to over-blurry SR results. To address this issue, we propose a novel and efficient diffusion model for SR that significantly reduces the number of diffusion steps, thereby eliminating the need for post-acceleration during inference and its associated performance deterioration. Our method constructs a Markov chain that transfers between the high-resolution image and the low-resolution image by shifting the residual between them, substantially improving the transition efficiency. Additionally, an elaborate noise schedule is developed to flexibly control the shifting speed and the noise strength during the diffusion process. Extensive experiments demonstrate that the proposed method obtains superior or at least comparable performance to current state-of-the-art methods on both synthetic and real-world datasets, even only with 15 sampling steps. Our code and model are available at https://github.com/zsyOAOA/ResShift.Comment: 17 pages, 7 figure

    Variational Denoising Network: Toward Blind Noise Modeling and Removal

    Full text link
    Blind image denoising is an important yet very challenging problem in computer vision due to the complicated acquisition process of real images. In this work we propose a new variational inference method, which integrates both noise estimation and image denoising into a unique Bayesian framework, for blind image denoising. Specifically, an approximate posterior, parameterized by deep neural networks, is presented by taking the intrinsic clean image and noise variances as latent variables conditioned on the input noisy image. This posterior provides explicit parametric forms for all its involved hyper-parameters, and thus can be easily implemented for blind image denoising with automatic noise estimation for the test noisy image. On one hand, as other data-driven deep learning methods, our method, namely variational denoising network (VDN), can perform denoising efficiently due to its explicit form of posterior expression. On the other hand, VDN inherits the advantages of traditional model-driven approaches, especially the good generalization capability of generative models. VDN has good interpretability and can be flexibly utilized to estimate and remove complicated non-i.i.d. noise collected in real scenarios. Comprehensive experiments are performed to substantiate the superiority of our method in blind image denoising.Comment: 11 pages, 4 figure

    Hyperspectral Image Restoration under Complex Multi-Band Noises

    No full text
    Hyperspectral images (HSIs) are always corrupted by complicated forms of noise during the acquisition process, such as Gaussian noise, impulse noise, stripes, deadlines and so on. Specifically, different bands of the practical HSIs generally contain different noises of evidently distinct type and extent. While current HSI restoration methods give less consideration to such band-noise-distinctness issues, this study elaborately constructs a new HSI restoration technique, aimed at more faithfully and comprehensively taking such noise characteristics into account. Particularly, through a two-level hierarchical Dirichlet process (HDP) to model the HSI noise structure, the noise of each band is depicted by a Dirichlet process Gaussian mixture model (DP-GMM), in which its complexity can be flexibly adapted in an automatic manner. Besides, the DP-GMM of each band comes from a higher level DP-GMM that relates the noise of different bands. The variational Bayes algorithm is also designed to solve this model, and closed-form updating equations for all involved parameters are deduced. The experiment indicates that, in terms of the mean peak signal-to-noise ratio (MPSNR), the proposed method is on average 1 dB higher compared with the existing state-of-the-art methods, as well as performing better in terms of the mean structural similarity index (MSSIM) and Erreur Relative Globale Adimensionnelle de Synthèse (ERGAS)

    Unsupervised Pansharpening via Low-rank Diffusion Model

    Full text link
    Pansharpening is a process of merging a highresolution panchromatic (PAN) image and a low-resolution multispectral (LRMS) image to create a single high-resolution multispectral (HRMS) image. Most of the existing deep learningbased pansharpening methods have poor generalization ability and the traditional model-based pansharpening methods need careful manual exploration for the image structure prior. To alleviate these issues, this paper proposes an unsupervised pansharpening method by combining the diffusion model with the low-rank matrix factorization technique. Specifically, we assume that the HRMS image is decomposed into the product of two low-rank tensors, i.e., the base tensor and the coefficient matrix. The base tensor lies on the image field and has low spectral dimension, we can thus conveniently utilize a pre-trained remote sensing diffusion model to capture its image structures. Additionally, we derive a simple yet quite effective way to preestimate the coefficient matrix from the observed LRMS image, which preserves the spectral information of the HRMS. Extensive experimental results on some benchmark datasets demonstrate that our proposed method performs better than traditional model-based approaches and has better generalization ability than deep learning-based techniques. The code is released in https://github.com/xyrui/PLRDiff

    Exploiting Diffusion Prior for Real-World Image Super-Resolution

    Full text link
    We present a novel approach to leverage prior knowledge encapsulated in pre-trained text-to-image diffusion models for blind super-resolution (SR). Specifically, by employing our time-aware encoder, we can achieve promising restoration results without altering the pre-trained synthesis model, thereby preserving the generative prior and minimizing training cost. To remedy the loss of fidelity caused by the inherent stochasticity of diffusion models, we introduce a controllable feature wrapping module that allows users to balance quality and fidelity by simply adjusting a scalar value during the inference process. Moreover, we develop a progressive aggregation sampling strategy to overcome the fixed-size constraints of pre-trained diffusion models, enabling adaptation to resolutions of any size. A comprehensive evaluation of our method using both synthetic and real-world benchmarks demonstrates its superiority over current state-of-the-art approaches.Comment: Project page: https://iceclear.github.io/projects/stablesr
    corecore